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ABSTRACT

It is shown that the following theorem holds in set theory without AC:
There is a function G which assigns to each Boolean algebra B a graph G(B)
such that (1) if G(B) is 3-colorable then there is a prime ideal in B and (2) every
finite subgraph of G(B)is 3-colorable. The proof uses a combinatorial lemma
on finite graphs.

Consider the following statements:
In every Boolean algebra there is a prime ideal

P, If Gis a graph such that every finite subgraph G* of G is n-colorable then
G itself is n-colorable.

C, The Cartesian product of a family of sets which have n» members each is
non-empty.

The following implications are provable in set theory without the axiom of
choice (AC):

I_)Pn+1_)Pn'—}Cn
C;, » P,

(see Mycielski [6] and [7]. For implications among the C,’s see Mostowski [5]
and Gauntt [1]).

It is known that C, is considerably weaker than I (see Lévy [4], the diagram on
p. 224). In [3] Lévy shows that C, — P, is not provable for any n. Here we
strengthen this result by proving P; — I. Thus for n = 3, the equivalence
P, « I is provable in set theory without AC.
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Many other equivalents of I are known; see [3] and [8] where other references
are given. It should also be mentioned that I is implied by and properly weaker
than AC (see Halpern [2]).

The proof of P; — [ is given in two parts: In part | we prove an elementary
combinatorial lemma which asserts the existence of certain finite graphs. In
part 2 we show how each Boolean algebra B is associated with a graph G(B)
in such a way that the 3-colorings of G(B) yield prime ideals of B, and the 3-col-
orings of the finite subgraphs of G(B) are yielded by the prime ideals of the
finite subalgebras of B.

Part 1

NOTATION. A graph is an ordered pair G = (4, R), where R is a
symmetric, irreflexive binary relation on A. A is the set of vertices of
G, denoted by |G | R, the set of edges of G, is denoted by G°. G’ is a
subgraph of G, G' £ G, if ]G’ | c |G1 and G'° = G°. (Notice that two
vertices of G’ which are connected by an edge of G are not necessarily con-
nected by an edge of G'). If N is a set of graphs then the sum of N, N,
is the graph (4,R) with 4 = [ J{|G|: Ge N}, R = | J{G": Ge N}. We write
G+ G’ for X {G,G'}. G denotes the cardinality of [ G[ . G is a complete n-graph,
if G = n and each pair of distinct vertices is joined by an edge. An n-coloring
of a graph {4, R} is a function ¢ from 4 into n (n = {0,1,---,n~—1}) such that
XRy —» ox # oy, all x,ye A. C,(G) denotes the set of all n-colorings of G. If r
is an equivalence relation on a set E, [r] denotes the corresponding partition
of E. eq,(E) denotes the set of all equivalence relations r on E with [—Tj < n
Thus eq,(E) < eq,+,(E). We use ..} E ambiguously to denote the functional
restriction o [ E of a function ¢ to a subset E of dom(s), or to denote the re-
lational restriction » | E of a relation r to E. ¢ H E denotes the equivalence re-
lation on E induced by o, ie. o ” E={{x,y>)eEx E:ox =0y}. f E C IGI,
let R(G,E) = {o ” E:06eC,(G)}. Thus R(G,E) is the set of equivalence rela-
tions on E which can be extended to an n-coloring of G.

COLORING EXTENSION LEMMA. Given n = 3, a finite set E and any subset
K of eq,(E). Then there exists a finite graph G E < ‘ G [ , such that R (G,E) = K.

COROLLARY. Given a finite set E and K < eq,(E), there is a finite G, E < , G l ,
such that R;(G,E) = K.

The Corollary is all we need in proving P; — I. We shall prove the general
lemma since it might be of interest in its own.
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ProposiTION 1. If E = |G,|N|G,|, then

R,(Gy + Gy, E) = R(G,, E)yNR(G,, E}).

The proof is immediate. (Note that if © ” E e R(G,E) then there is o€ C,(G)
with ¢ M E = 7 | E).

In virtue of Proposition 1 it is sufficient to prove the Coloring Extension Lemma
for each of the sets K, = eq,(E) — {r}, re eq,(E). For, let G, be graphs appropriate
for K, and such that |G,|n|G,|=E for rss. Then the graph

2 {G,: reeq,(E) — K} is appropriate for K if K # eq,(E). If K = eq,(E) we
take the graph over E without any edges.*

PROPOSITION 2. Let n = 3. Then there are arbitrarily large finite graphs
G such that

i) G is not (n—1)-colorable,

it) given any non-constant function f from |G| into n, there is an n-coloring
o of G such that ox % fx,all xe | Gl; indeed for each h = n with h = n (mod 2)
there is a graph G, G = h, satisfying (i) and (ii).

Proof by induction on n. If n =3, h = 3, h odd, let G be a cycle with &
vertices; say G = (h,R), where OR1, 1R2,---(h—1)RO. G is not 2-colorable
since h is odd and = 3. Given a non-constant function f from h into 3, there
are adjacent vertices x,y with fx # fy, say f0 # f(h—1). Let o0 = f(h—1)
and o(i + 1) < 3 such that 6(i+1) #% giand o(i + 1) # f(i+ 1), i=0,1,---, h—2.
Then 60 # fO since f(h—1) % f0, and o(h—1) 5% o0 since 60 = f(h—1).
Therefore o is a 3-coloring of G with the required property.

Induction step. Let Ah>n+1, h=n+1 (mod2). Let G be a graph,
G=h- 1, satisfying (i) and (ii) with respect to n. We introduce one new vertex
Q and join it with each vertex of G be an edge. The resulting graph G’ has h
vertices and satisfies (i) and (ii) with respect to n + 1. (i) is trivial.

PROOF OF (ii). Let f be a non-constant function from | G'| into n + 1. There
is a permutation 7 on n + 1 such that the function f; = = o fsatisfies (a) f;(Q) # n
and (b) f,(x) = n for some xe|G|. Since h —1>1 and n > 1, (b) implies the
existence of a non-constant function f, from |G| into n such that f,y = fiy
whenever f;y < n. By induction hypothesis there is an n-coloring = of G with

* Victor Harnik found a proof of the Coloring Extension Lemma which is dual to the proof
given here: He starts with the trivial cases K= {r} and gives for # = 3 a non-trivial construc-
tion of a “‘graph multiplication”” M, such that

Rn(Mn(Gh GZ)) E) = Rn(Gh E) U Rn(G?.’ E)'
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ty#fry,all ye I G[. Since the range of 7 is included in n, we have 7y # f,y, all
ye | G
By (a), ty # fyy for all ye|G’l. Thus ¢ = n~'otis an (n+1)-coloring of G’
such that gy # fy, all ye[G’[.

Note that Proposition 2 fails for n = 2. Except in reference to this proposition,

, and t can be extended to an (n + 1)-coloring of G’ by setting tQ = n.

the hypothesis n > 2 will not be used any more in the first part.

For the following graph constructions we fix n 2 3 and consider triples
{G,E,r) where G is a finite graph, E < |G| and reeq,(E). Let “ext” be the
relation defined by <G, E,r)>ext{G',E’,r"> iff G < G’ and for all o:

(a) if 0eC(G') and a“ E =rtheno ”E’ =7,

(b) if 6eC,(G) and ¢ || E # r then there is € C,(G’) such that o < 7 and
T H E #vr.

The relation ‘‘ext’ is transitive and reflexive. We consider the following con-
ditions on a triple (G, E,r>:

(Cy) no condition

(o)) Eﬁ =n

(Cy) [rl=1 (r is trivial)

(C,) [Fl=1and E=nand E = n (mod 2)
(C) réR(G,E)

ProrosiTioN 3.1. (i = 0,1,2,3,): If <{G,E,r) satifies (C;) then there is
(G, E'.r") satisfying (C;;,) such that {(G,E,r>ext{G',E',r").

Proor oF 3.0. Given {(G,E,r>. Let [r] = {Fy,-,F,}. If k=n we set
{G',E,r"> =<G,E,r>. If k <n, we pick one element c;e F; for each i < k.
Let A be a complete (n—k)-graph disjoint to G. Let G’ be the sum G + 4 to-
gether with the edges {c,a}, i < k, aelAI. let E' = EUIAI and r' =ru
(identity on |A|). Then [r'] = n.

ProoF ofF (a). Let oeC,(G’) such that ¢ ” E=r. Then r' = a” E'. To
verify the converse inclusion assume x(o H E")y and consider the three cases
x,yekE, x,ye|A], xeE and yeIAl. The last case is impossible since xrc;,
some i, and the edge {c;, y} belongs to G'. The first two cases clearly imply
xr'y. Thus v = ¢ H E'.

PRrOOF OF (b). Let 6€C,(G) and o | E s r. Since 4 = n—k, there is
t:|G’| > n such that ¢ < 7 and 7 || 4| is one-one and ta # 1c;, all ae|A4|
and i < k. ThenteC,(G')and ¢ | E' 5 ', since r' [ E=r.
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Proor ofF 3.1. Given {G,E,r) satisfying (C,). Let [r] = {F,,---,F,}. For
each {(x{,X,,"*,X,—p€F, XxF, x -« xF,_; we introduce a new vertex
P(xy,",x,—1) and the edges {x;,P(x;,*,%,-1)}, i=1,2,--,n—1. G’ is
the resulting extension of G. Let E' = F,U{P(t): teFy x --- x F,_;} and
r' = E' x E’. Thus [_r_T] = 1. The proof of (a) is immediate.

PROOF OF (b). Let 0eC,(G) and ¢ | E # r. Then ¢ | E & rsince [r] = n.
Therefore there are i,j, i<j<n, and aeF;, beF,; such that ga = ob.

Case 1. j = n. Since every new vertex is joined to only n — 1 old vertices,
o can be extended to an n-coloring © of G'. a is ith component of some
teFy x . xF,_;. Thus tb = 1a # 7P(f). Hence 1 H E = r" since bekFE’
and P(t)e E’.

Case 2. j<mn.Llet teF, x --- xF,_, with ith component a and jth com-
ponent b. Since 6a = ob there are at least two choices for TP(t). Therefore t
can be chosen such that 7 | E’ is non-constant.

PROOF OF 3.2. Given (E, G, r satisfying (C,). Choose k such that E + k is
=n and =n (mod2). We introduce k new vertices P,---,P, and k disjoint
complete (n —1)-graphs A4, -, 4, and pick one element Pye E. Each vertex of
4, is joined to the two vertices P, and P;_,, i = 1,2,---,k. G' is the resulting
extension of G, E' = EU{P,,---,P,}, r' = E' x E'. Clearly (G',E’,r") is an
“‘ext”-extension satisfying (C).

Proor oF 3.3. Given {G,E,r)> satisfying (C;). Let A be a graph, A=E
and |A | N | G) = 0, satisfying (i) and (ii) of Proposition 2. Let g be a one-to-one
function from IA] onto E. Let G’ be the sum G + A together with the edges
{a,ga}, ae ’A [ Let E' = E, ¥’ = r. Since A is not (n—1)-colorable, we have
r¢ R(G’,E), hence (C,): r' ¢ R,(G',E’). Condition (a) holds for the same rea-
son: If 6 C,(G') then o " Ex#r.

PROOF OF (b). Given e C,(G) with ¢ || E % r. Let fa = o(ga), ac (4]
Then f is non-constant. By Proposition 2(ii) there is 6, € C,(4) with ¢,a # o(ga),
allae ‘ A4 ] . Then 7 = 6 U g, is the required extension of o.

PrOPOSITION 4. Coloring Extension Lemma for K, = eq(E) — {r}

Proor. Given E,r. Let G, be the graph on E without any edges. By Propo-
sition 3 and transitivity of “‘ext” there is {G',E’,r") satisfying (C,) such that
{Go,E,r>ext{G',E',v'y. Since r'¢ R, (G',E), (a) implies r¢R(G",E). If
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seeq,(E) — {r}, let o€ C,(G,) with & ’E = 5. By (b), o can be extended to an
n-coloring of G’. Therefore se R, (G’,E). Hence R(G,E) = K,.

As noted above, the Coloring Extension Lemma follows from Propositions
1 and 4.

Part 2

In order to avoid the axoim of choice we need a uniform way of forming dis-
joint unions of arbitrary sets of graphs.

The pair {G,E) satisfies condition (*) if G is a graph, E < | G
E = V x {0} (Vis the universe, O the empty set).

Given (G,E), let

, and

(x,{G,E»), if xe|G|—E
o= |

X, if xekE.

f is one-to-one on IG[ since {x,{G,E>> ¢E.
Let [G,E] denote the f-isomorphic image of G.

PROPOSITION 5.

1) E < |[G,E]| and R([G,E],E) = R,(G,E);

2) If {G,Ey, {G',E"y both satisfy (*) and {(G,E> # (G',E'>, then
|[G.E]| N |[G",E']| = ENE".

PrOOF OF (2). Let ye|[G,E]|N|G",E']|. If y¢E then y = {x,{G,E>) and
therefore y ¢ E’ since {G,E) 0 and E' < V x {0}. Hence y = {(x’,{G",E'>>
which contradicts (G’,E’Y # (G,E). Therefore ye ENE’. The converse in-
clusion follows from (1).

Let M be a set of pairs (G, E) satisfying (*). We define

M = 3{[G,E]: (G,E)e M},
Uw = (J{E: 3GKG,E) e M)}.
ProrosITION 6. For M as above
1) R,,(ZAM, Uy) € {reeqUy): V{G,E)e M (r } E€R,(G,E))}
2) If M is finite, then the converse inclusion holds too.
Note. The condition of finiteness is only required to avoid the axiom of choice.

Proof. (1) is immediate from Proposition 5(1). Assume then M finite and
reeq,(Uy)suchthatr | E€ R(G,E),all{G,Eye M.By X1),r } E€ R([G, E], E).
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Let 64: Uy — n such that o, H Uy = r. For each {G,E)>eM we choose an
n-coloring o(G, E) of [ G, E] which extends o, | E. Let 6 =(_] {6(G, E); (G, E)e M}.
Then ¢ is single-valued (Proposition 5(2)). Therefore g e C,,(fM) and o ] Uy=r.
Hence re R,,(ﬁM s U

THEOREM (of set theory without AC). There is a function G which assigns
to each Boolean algebra B a graph G(B) such that

1) if G(B) is 3-colorable then there is a prime ideal in B,

2) every finite subgraph of G(B) is 3-colorable.

COROLLARY. P; — .

Proor oF THE THEOREM. It suffices to define:G(B)for the case |B| < Vx {0}.
Let fin(B) denote the set of finite subalgebras of B. If I < |B*| = IBI, let
r(B*,I) denote the equivalence relation on IB*] corresponding to the partition
{I|B*| —I}. Let K(B*) = {r(B*,D): I prime ideal in B*}. Then K(B*) <
eq,(| B*|). Let M = {<G,|B*|): B*efin(B) and |G|<|B*| VUl and
Ry(G,|B*|) = K(B%)}.

The graph G(B) = 3 M then satisfies (1) and (2).

For the proof we recall the following:

a) Every finitely generated Boolean algebra is finite.

b) Every finite Boolean algebra has prime ideals.

¢) The restriction of a prime ideal to a subalgebra is a prime ideal of the
subalgebra.

d) IfI < |B|and IN|B*|is a prime ideal of B* for all B*efin(B), then I
is a prime ideal of B.

Proor ofF (1). From the (Corollary to the) Coloring Extension Lemma we
get:
(+) For each B*cfin(B) there is G such that {G,IB*|>eM . In particular,
|B| = Uy = |GB)|.

Given a 3-coloring ¢ of G(B), let I = {xe|B l: ox = o0}, where 0 denotes
the zero-element of B. We show that I is a prime ideal of B. Let r = ¢ H Uy

Then r |} IB* | e K(B*), all B*efin(B) (Proposition 6(1) and (+)). Therefore,
since I n]B*{ is the equivalence class of r |B*l containing 0, I N |B*| is’a
prime ideal of B* for all B* € fin(B). By (d), I is a prime ideal of B.

ProOOF OF (2). Let G* be a finite subgraph of G(B). Let N be a finite subset
of M with G* =< IN. By (a) there is B, € fin (B) such that |B*| - lBol for all



Vol. 9, 1971 BOOLEAN PRIME IDEAL THEOREM 429

B* occurring in N . Let I, be a prime ideal of B, ((b)). Let vy = r(By, Iy) | Uy.
Then ry € eq5(Uy), and for all <G, [B* |) € N we have ry | IB* [ = r(B*, I, N |B* |)
€ K(B*) = R4(G,|B*|) by (c). Proposition 6(2) yields ro € Ry(EN,Uy). In
particular, SN is 3-colorable. Thus G* is 3-colorable.

ProBLEM. Give a “‘direct” proof of Py —» P,.
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