COLORING INFINITE GRAPHS AND THE BOOLEAN PRIME IDEAL THEOREM

BY

H. LÄUCHLI

ABSTRACT

It is shown that the following theorem holds in set theory without AC: There is a function G which assigns to each Boolean algebra B a graph *G(B)* such that (1) if $G(B)$ is 3-colorable then there is a prime ideal in B and (2) every finite subgraph of *G(B)* is 3-colorable. The proof uses a combinatorial lemma on finite graphs.

Consider the following statements:

- I In every Boolean algebra there is a prime ideal
- P_n If G is a graph such that every finite subgraph G^* of G is *n*-colorable then G itself is n-colorable.
- C_n . The Cartesian product of a family of sets which have *n* members each is non-empty.

The following implications are provable in set theory without the axiom of choice (AC):

$$
I \rightarrow P_{n+1} \rightarrow P_n \rightarrow C_n
$$

$$
C_2 \rightarrow P_2
$$

(see Mycielski [6] and [7]. For implications among the C_n 's see Mostowski [5] and Gauntt $\lceil 1 \rceil$).

It is known that C_n is considerably weaker than I (see Lévy [4], the diagram on p. 224). In [3] Lévy shows that $C_n \rightarrow P_3$ is not provable for any n. Here we strengthen this result by proving $P_3 \rightarrow I$. Thus for $n \ge 3$, the equivalence $P_n \leftrightarrow I$ is provable in set theory without AC.

Received June 7, 1970 and in revised form July 10, 1970

Many other equivalents of I are known; see [3] and [8] where other references are given. It should also be mentioned that I is implied by and properly weaker than AC (see Halpern [2]).

The proof of $P_3 \rightarrow I$ is given in two parts: In part 1 we prove an elementary combinatorial lemma which asserts the existence of certain finite graphs. In part 2 we show how each Boolean algebra B is associated with a graph *G(B)* in such a way that the 3-colorings of *G(B)* yield prime ideals of B, and the 3-colorings of the finite subgraphs of *G(B)* are yielded by the prime ideals of the finite subalgebras of B .

Part 1

NOTATION. A graph is an ordered pair $G = \langle A, R \rangle$, where R is a symmetric, irreflexive binary relation on A . A is the set of vertices of G, denoted by $|G|$. R, the set of edges of G, is denoted by G° . G' is a subgraph of G, $G' \leq G$, if $|G'| \subseteq |G|$ and $G' \subseteq G^{\circ}$. (Notice that two vertices of G' which are connected by an edge of G are not necessarily connected by an edge of G'). If N is a set of graphs then the sum of N, ΣN , is the graph $\langle A, R \rangle$ with $A = \bigcup \{ |G| : G \in N \}, R = \bigcup \{ G^{\circ} : G \in N \}.$ We write $G + G'$ for $\sum \{G, G'\}$. \overline{G} denotes the cardinality of $|G|$. G is a complete *n*-graph, if $\overline{G} = n$ and each pair of distinct vertices is joined by an edge. An *n*-coloring of a graph $\langle A, R \rangle$ is a function σ from A into n ($n = \{0, 1, \dots, n-1\}$) such that $xRy \to \sigma x \neq \sigma y$, all $x, y \in A$. $C_n(G)$ denotes the set of all *n*-colorings of G. If r is an equivalence relation on a set E, $\lceil r \rceil$ denotes the corresponding partition of *E. eq_n*(*E*) denotes the set of all equivalence relations r on *E* with $\overline{|\mathcal{F}|} \leq n$. Thus $eq_n(E) \subseteq eq_{n+1}(E)$. We use $\ldots \upharpoonright E$ ambiguously to denote the functional restriction $\sigma \upharpoonright E$ of a function σ to a subset E of dom(σ), or to denote the relational restriction $r \upharpoonright E$ of a relation r to E. $\sigma \parallel E$ denotes the equivalence relation on E induced by σ , i.e. $\sigma \parallel E = \{ \langle x, y \rangle \in E \times E : \sigma x = \sigma y \}$. If $E \subseteq |G|$, let $R_n(G, E) = \{\sigma \mid E: \sigma \in C_n(G)\}\)$. Thus $R_n(G, E)$ is the set of equivalence relations on E which can be extended to an *n*-coloring of G .

COLORING EXTENSION LEMMA. Given $n \geq 3$, a finite set E and any subset *K* of eq_n(*E*). Then there exists a finite graph G, $E \subseteq |G|$, such that $R_n(G, E) = K$.

COROLLARY. *Given a finite set E and K* \subseteq *eq₂(E), there is a finite G, E* \subseteq | G |, *such that* $R_3(G, E) = K$.

The Corollary is all we need in proving $P_3 \rightarrow I$. We shall prove the general lemma since it might be of interest in its own.

PROPOSITION 1. If $E = |G_1| \cap |G_2|$, then

 $R_n(G_1 + G_2, E) = R_n(G_1, E) \cap R_n(G_2, E).$

The proof is immediate. (Note that if $\tau \parallel E \in R_n(G, E)$ then there is $\sigma \in C_n(G)$ with $\sigma \upharpoonright E=\tau \upharpoonright E$.

In virtue of Proposition 1 it is sufficient to prove the Coloring Extension Lemma for each of the sets $K_r = eq_n(E) - \{r\}$, $r \in eq_n(E)$. For, let G_r be graphs appropriate for K_r and such that $|G_r| \cap |G_s| = E$ for $r \neq s$. Then the graph ${\Sigma} \{G_r: r \in eq_n(E) - K\}$ is appropriate for K if $K \neq eq_n(E)$. If $K = eq_n(E)$ we take the graph over E without any edges.*

PROPOSITION 2. Let $n \geq 3$. Then there are arbitrarily large finite graphs *G such that*

i) G is not $(n-1)$ -colorable,

ii) *given any non-constant function f from* [G{ *into n, there is an n-coloring* σ of G such that $\sigma x \neq fx$, all $x \in |G|$; indeed for each $h \geq n$ with $h \equiv n \pmod{2}$ *there is a graph G,* $\overline{\overline{G}} = h$ *, satisfying (i) and (ii).*

Proof by induction on n. If $n = 3$, $h \ge 3$, h odd, let G be a cycle with h vertices; say $G = \langle h, R \rangle$, where $0R1$, $1R2$, $\cdots (h-1)R0$. G is not 2-colorable since h is odd and ≥ 3 . Given a non-constant function f from h into 3, there are adjacent vertices x, y with $fx \neq fy$, say $f0 \neq f(h-1)$. Let $\sigma0 = f(h-1)$ and $\sigma(i + 1) < 3$ such that $\sigma(i + 1) \neq \sigma i$ and $\sigma(i + 1) \neq f(i + 1)$, $i = 0, 1, \dots, h-2$. Then $\sigma 0 \neq f0$ since $f(h-1) \neq f0$, and $\sigma(h-1) \neq \sigma0$ since $\sigma 0 = f(h-1)$. Therefore σ is a 3-coloring of G with the required property.

Induction step. Let $h \ge n+1$, $h \equiv n+1 \pmod{2}$. Let G be a graph, $\bar{G} = h - 1$, satisfying (i) and (ii) with respect to n. We introduce one new vertex Q and join it with each vertex of G be an edge. The resulting graph G' has h vertices and satisfies (i) and (ii) with respect to $n + 1$. (i) is trivial.

PROOF OF (ii). Let f be a non-constant function from $|G'|$ into $n + 1$. There is a permutation π on $n + 1$ such that the function $f_1 = \pi \circ f$ satisfies (a) $f_1(Q) \neq n$ and (b) $f_1(x) = n$ for some $x \in |G|$. Since $h - 1 > 1$ and $n > 1$, (b) implies the existence of a non-constant function f_2 from $|G|$ into n such that $f_2y = f_1y$ whenever $f_1 y < n$. By induction hypothesis there is an *n*-coloring τ of G with

$$
R_n(M_n(G_1, G_2), E) = R_n(G_1, E) \cup R_n(G_2, E).
$$

^{*} Victor Hamik found a proof of the Coloring Extension Lemma which is dual to the proof given here: He starts with the trivial cases $K=\{r\}$ and gives for $n \geq 3$ a non-trivial construction of a "graph multiplication" M_n such that

 $\tau y \neq f_2 y$, all $y \in G$. Since the range of τ is included in *n*, we have $\tau y \neq f_1 y$, all $y \in |G|$, and τ can be extended to an $(n + 1)$ -coloring of G' by setting $\tau Q = n$. By *(a)*, $\tau y \neq f_1 y$ for all $y \in |G'|$. Thus $\sigma = \pi^{-1} \circ \tau$ is an $(n+1)$ -coloring of G' such that $\sigma y \neq f y$, all $y \in |G'|$.

Note that Proposition 2 fails for $n = 2$. Except in reference to this proposition, the hypothesis $n > 2$ will not be used any more in the first part.

For the following graph constructions we fix $n \geq 3$ and consider triples $\langle G, E, r \rangle$ where G is a finite graph, $E \subseteq |G|$ and $r \in eq_n(E)$. Let "ext" be the relation defined by $\langle G, E, r \rangle$ ext $\langle G', E', r' \rangle$ iff $G \leq G'$ and for all σ :

(a) if $\sigma \in C_n(G')$ and $\sigma \parallel E = r$ then $\sigma \parallel E' = r'$,

(b) if $\sigma \in C_n(G)$ and $\sigma \parallel E \neq r$ then there is $\tau \in C_n(G')$ such that $\sigma \subseteq \tau$ and $\tau \parallel E' \neq r'$.

The relation "ext" is transitive and reflexive. We consider the following conditions on a triple $\langle G, E, r \rangle$:

- (C_0) no condition
- (C_1) $\overline{[r]} = n$
- (C_2) $\overline{[r]} = 1$ (*r* is trivial)
- (C_3) $\overline{[r]}=1$ and $\overline{E}\geq n$ and $\overline{E}\equiv n \pmod{2}$
- (C_4) $r \notin R_n(G, E)$

PROPOSITION 3.1. $(i = 0, 1, 2, 3)$: If $\langle G, E, r \rangle$ satifies (C_i) then there is $\langle G', E', r' \rangle$ satisfying (C_{i+1}) such that $\langle G, E, r \rangle$ ext $\langle G', E', r' \rangle$.

PROOF OF 3.0. Given $\langle G, E, r \rangle$. Let $[r] = \{F_1, \dots, F_k\}$. If $k = n$ we set $\langle G', E', r' \rangle = \langle G, E, r \rangle$. If $k < n$, we pick one element $c_i \in F_i$ for each $i \leq k$. Let A be a complete $(n-k)$ -graph disjoint to G. Let G' be the sum $G + A$ together with the edges $\{c_i, a\}$, $i \leq k$, $a \in |A|$. Let $E' = E \cup |A|$ and $r' = r \cup$ (identity on $|A|$). Then $[r'] = n$.

PROOF OF (a). Let $\sigma \in C_n(G')$ such that $\sigma \parallel E = r$. Then $r' \subseteq \sigma \parallel E'$. To verify the converse inclusion assume $x(\sigma \parallel E')y$ and consider the three cases $x, y \in E$, $x, y \in |A|$, $x \in E$ and $y \in |A|$. The last case is impossible since xrc_i , some *i*, and the edge $\{c_i, y\}$ belongs to G'. The first two cases clearly imply $xr'y$. Thus $r' = \sigma \parallel E'$.

PROOF OF (b). Let $\sigma \in C_n(G)$ and $\sigma \parallel E \neq r$. Since $\overline{A} = n-k$, there is $\tau: |G'| \rightarrow n$ such that $\sigma \subseteq \tau$ and $\tau \upharpoonright |A|$ is one-one and $\tau a \neq \tau c_i$, all $a \in |A|$ and $i \leq k$. Then $\tau \in C_n(G')$ and $\tau \parallel E' \neq r'$, since $r' \upharpoonright E = r$.

PROOF OF 3.1. Given $\langle G, E, r \rangle$ satisfying (C_1) . Let $[r] = \{F_1, \dots, F_n\}$. For each $\langle x_1, x_2, \dots, x_{n-1} \rangle \in F_1 \times F_2 \times \dots \times F_{n-1}$ we introduce a new vertex $P(x_1, \dots, x_{n-1})$ and the edges $\{x_i, P(x_1, \dots, x_{n-1})\}, i = 1, 2, \dots, n-1$. G' is the resulting extension of G. Let $E' = F_n \cup \{P(t): t \in F_1 \times \cdots \times F_{n-1}\}\$ and $r' = E' \times E'$. Thus $\lceil \overline{r'} \rceil = 1$. The proof of (a) is immediate.

PROOF OF (b). Let $\sigma \in C_n(G)$ and $\sigma \parallel E \neq r$. Then $\sigma \parallel E \neq r$ since $\boxed{r} = n$. Therefore there are *i, j,* $i < j \leq n$, and $a \in F_i$, $b \in F_j$ such that $\sigma a = \sigma b$.

Case 1. $j = n$. Since every new vertex is joined to only $n - 1$ old vertices, σ can be extended to an *n*-coloring τ of G'. a is ith component of some $t \in F_j \times \cdots \times F_{n-1}$. Thus $\tau b = \tau a \neq \tau P(t)$. Hence $\tau \parallel E' \neq r'$ since $b \in E'$ and $P(t) \in E'$.

Case 2. $j < n$. Let $t \in F_1 \times \cdots \times F_{n-1}$ with ith component a and jth component b. Since $\sigma a = \sigma b$ there are at least two choices for $\tau P(t)$. Therefore τ can be chosen such that $\tau \upharpoonright E'$ is non-constant.

PROOF OF 3.2. Given $\langle E, G, r \rangle$ satisfying (C_2) . Choose k such that $\overline{E} + k$ is $\geq n$ and $\equiv n \pmod{2}$. We introduce k new vertices P_1, \dots, P_k and k disjoint complete $(n-1)$ -graphs A_1, \dots, A_k and pick one element $P_0 \in E$. Each vertex of A_i is joined to the two vertices P_i and P_{i-1} , $i = 1, 2, \dots, k$. *G'* is the resulting extension of *G*, $E' = E \cup \{P_1, \dots, P_k\}$, $r' = E' \times E'$. Clearly $\langle G', E', r' \rangle$ is an "ext"-extension satisfying (C_3) .

PROOF OF 3.3. Given $\langle G, E, r \rangle$ satisfying (C_3) . Let A be a graph, $\overline{A} = \overline{E}$ and $|A| \cap |G| = 0$, satisfying (i) and (ii) of Proposition 2. Let g be a one-to-one function from |A| onto E. Let G' be the sum $G + A$ together with the edges ${a, ga}$, $a \in |A|$. Let $E' = E$, $r' = r$. Since A is not $(n-1)$ -colorable, we have $r \notin R_n(G', E)$, hence (C_4) : $r' \notin R_n(G', E')$. Condition (a) holds for the same reason: If $\sigma \in C_n(G')$ then $\sigma \parallel E \neq r$.

PROOF OF (b). Given $\sigma \in C_n(G)$ with $\sigma \parallel E \neq r$. Let $fa = \sigma(ga)$, $a \in |A|$. Then f is non-constant. By Proposition 2(ii) there is $\sigma_1 \in C_n(A)$ with $\sigma_1 a \neq \sigma(ga)$, all $a \in |A|$. Then $\tau = \sigma \cup \sigma_1$ is the required extension of σ .

PROPOSITION 4. Coloring Extension Lemma for $K_r = eq_n(E) - \{r\}$

PROOF. Given E, r. Let G_0 be the graph on E without any edges. By Proposition 3 and transitivity of "ext" there is $\langle G', E', r' \rangle$ satisfying (C_4) such that $\langle G_0, E, r \rangle$ ext $\langle G', E', r' \rangle$. Since $r' \notin R_n(G', E')$, (a) implies $r \notin R_n(G', E)$. If $s \in eq_n(E) - \{r\}$, let $\sigma \in C_n(G_0)$ with $\sigma \parallel E = s$. By (b), σ can be extended to an *n*-coloring of G'. Therefore $s \in R_n(G', E)$. Hence $R_n(G', E) = K_r$.

As noted above, the Coloring Extension Lemma follows from Propositions 1 and 4.

Part **2**

In order to avoid the axoim of choice we need a uniform way of forming disjoint unions of arbitrary sets of graphs.

The pair $\langle G, E \rangle$ satisfies condition (*) if G is a graph, $E \subseteq |G|$, and $E \subseteq V \times \{0\}$ (*V* is the universe, 0 the empty set).

Given $\langle G, E \rangle$, let

$$
fx = \begin{cases} \langle x, \langle G, E \rangle \rangle, & \text{if } x \in |G| - E \\ x, & \text{if } x \in E. \end{cases}
$$

f is one-to-one on $|G|$ since $\langle x, \langle G, E \rangle \rangle \notin E$.

Let $[G, E]$ denote the *f*-isomorphic image of G.

PROPOSITION 5.

1) $E \subseteq |[G, E]|$ and $R_n([G, E], E) = R_n(G, E);$

2) If $\langle G, E \rangle$, $\langle G', E' \rangle$ both satisfy (*) and $\langle G, E \rangle \neq \langle G', E' \rangle$, then $\left| \begin{bmatrix} G,E \end{bmatrix} \right| \cap \left| \begin{bmatrix} G',E' \end{bmatrix} \right| = E \cap E'.$

PROOF OF (2). Let $y \in |[G, E] \cap |G', E'||$. If $y \notin E$ then $y = \langle x, \langle G, E \rangle \rangle$ and therefore $y \notin E'$ since $\langle G, E \rangle \neq 0$ and $E' \subseteq V \times \{0\}$. Hence $y = \langle x', \langle G', E' \rangle \rangle$ which contradicts $\langle G', E' \rangle \neq \langle G, E \rangle$. Therefore $y \in E \cap E'$. The converse inclusion follows from (1).

Let M be a set of pairs $\langle G, E \rangle$ satisfying (*). We define

$$
\sum M = \sum \{ [G, E] : \langle G, E \rangle \in M \},
$$

\n
$$
U_M = \bigcup \{ E : \exists G (\langle G, E \rangle \in M) \}.
$$

PROPOSITION 6. *For M as above*

1)
$$
R_n(\hat{\Sigma}M, U_M) \subseteq \{r \in eq_n(U_M): \forall \langle G, E \rangle \in M \ (r \upharpoonright E \in R_n(G, E))\}
$$

2) *If M is finite, then the converse inclusion holds too.*

Note. The condition of finiteness is only required to avoid the axiom of choice.

Proof. (1) is immediate from Proposition $5(1)$. Assume then M finite and $r \in eq_n(U_M)$ such that $r \upharpoonright E \in R_n(G, E)$, all $\langle G, E \rangle \in M$. By 5(1), $r \upharpoonright E \in R_n(\lceil G, E \rceil, E)$. Let $\sigma_0: U_M \to n$ such that $\sigma_0 || U_M = r$. For each $\langle G, E \rangle \in M$ we choose an *n*-coloring $\sigma(G, E)$ of $[G, E]$ which extends $\sigma_0 \upharpoonright E$. Let $\sigma = \int {\sigma(G, E)}; \langle G, E \rangle \in M$. Then σ is single-valued (Proposition 5(2)). Therefore $\sigma \in C_n(\hat{\Sigma}M)$ and $\sigma \parallel U_M = r$. Hence $r \in R_n(\hat{\Sigma}M, U_M)$.

THEOREM (of set theory without AC). *There is a function G which assigns to each Boolean algebra B a graph G(B) such that*

1) *if G(B) is 3-colorable then there is a prime ideal in B,*

2) *every finite subgraph of G(B) is 3-colorable.*

COROLLARY. $P_3 \rightarrow I$.

PROOF OF THE THEOREM. It suffices to define $G(B)$ for the case $|B| \subseteq V \times \{0\}$. Let fin(B) denote the set of finite subalgebras of B. If $I \subseteq |B^*| \subseteq |B|$, let $r(B^*,I)$ denote the equivalence relation on $|B^*|$ corresponding to the partition ${I, |B^*| - I}.$ Let $K(B^*) = {r(B^*, I): I}$ prime ideal in B^* . Then $K(B^*) \subseteq I$ $eq_2(\begin{array}{c|c|c|c|c} B^* \end{array})$. Let $M = \{\langle G, \mid B^*| \rangle : B^* \in \text{fin}(B) \text{ and } \mid G \mid \subseteq B^*| \cup \omega! \text{ and }$ $R_3(G, |B^*|) = K(B^*)$.

The graph $G(B) = \sum M$ then satisfies (1) and (2).

For the proof we recall the following:

- a) Every finitely generated Boolean algebra is finite.
- b) Every finite Boolean algebra has prime ideals.

c) The restriction of a prime ideal to a subalgebra is a prime ideal of the subalgebra.

d) If $I \subseteq |B|$ and $I \cap |B^*|$ is a prime ideal of B^* for all $B^* \in \text{fin}(B)$, then I is a prime ideal of B.

PROOF OF (1). From the (Corollary to the) Coloring Extension Lemma we get:

(+) For each $B^* \in \text{fin}(B)$ there is G such that $\langle G, |B^*| \rangle \in M$. In particular, $|B|=U_M\subseteq |G(B)|.$

Given a 3-coloring σ of $G(B)$, let $I = \{x \in |B| : \sigma x = \sigma 0\}$, where 0 denotes the zero-element of B. We show that I is a prime ideal of B. Let $r = \sigma \parallel U_M$. Then $r \upharpoonright |B^*| \in K(B^*)$, all $B^* \in \text{fin}(B)$ (Proposition 6(1) and (+)). Therefore, since $I \cap |B^*|$ is the equivalence class of $r \upharpoonright |B^*|$ containing 0, $I \cap |B^*|$ is a prime ideal of B^* for all $B^* \in \text{fin}(B)$. By (d), I is a prime ideal of B.

PROOF OF (2). Let G^* be a finite subgraph of $G(B)$. Let N be a finite subset of M with $G^* \leq \hat{\Sigma} N$. By (a) there is $B_0 \in \text{fin}(B)$ such that $|B^*| \leq |B_0|$ for all B^{*} occurring in N. Let I_0 be a prime ideal of B_0 ((b)). Let $r_0 = r(B_0, I_0) \upharpoonright U_N$. Then $r_0 \in eq_3(U_N)$, and for all $\langle G, |B^*| \rangle \in N$ we have $r_0 \upharpoonright |B^*| = r(B^*, I_0 \cap |B^*|)$ $\epsilon K(B^*) = R_3(G, |B^*|)$ by (c). Proposition 6(2) yields $r_0 \epsilon R_3(\hat{\Sigma}N, U_N)$. In particular, $\hat{\Sigma}N$ is 3-colorable. Thus G^* is 3-colorable.

PROBLEM. Give a "direct" proof of $P_3 \rightarrow P_4$.

REFERENCES

1. R.J. Gauntt, *Axiom of choice for finite sets,* Notices Amer. Math. Soc., 17 (1970), 454.

2. J. D. Halpern, *The independence of the axiom of choice from the Boolean prime ideal theorem,* Fund. Math., 55 (1964), 57-66.

3. A. Levy, *Remarks on a paper by J. Mycielski.* Acta Math. Acad. Sci. Hungar., 14 (1963), 125-130.

4. A. Levy, *The Fraenkel-Mostowski method for independence proofs in set theory,* in: The Theory of Models, North-Holland Pub. Co., Amsterdam, 1965, 221-228.

5. A. Mostowski, *Axiom of choice for finite sets,* Fund. Math., 33 (1945), 137-168.

6. J. Mycielski, *Some remarks and problems on the colouring of infinite graphs and the theorem ofKuratowski,* Acta Math. Acad. Sci. Hungar., 12 (1961), 125-129.

7. J. Mycielski, *Correction to my paper on the colouring of infinite graphs and the theorem of Kuratowski*, Acta Math. Acad. Sci. Hungar., 18 (1967), 339-340.

8. J. Mycielski. *Two remarks on Tychonoff'a' product theorem,* Bull. Acad. Polon. Sci., 12 (1964), 439-441.

E.T.H. ZURICH