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ABSTRACT 

It is shown that the following theorem holds in set theory without AC: 
There is a function G which assigns to each Boolean algebra B a graph G(B) 
such that (1) if G(B) is 3-eolorable then there is a prime ideal in B and (2) every 
finite subgraph of G(B) is 3-colorable. The proof uses a combinatorial lemma 
on finite graphs. 

Consider the following statements: 

I In every Boolean algebra there is a prime ideal 

P .  I f  G is a graph such that every finite subgraph G* of G is n-colorable then 

G itself is n-colorable. 

C. The Cartesian product of  a family of  sets which have n members each is 

non-empty. 

The following implications are provable in set theory without the axiom of  

choice (AC): 

I ~ Pn+I --, Pn --* C n 

C2 --~ P2 

(see Mycielski [-6] and [7]. For implications among the Cn'S see Mostowski [.5] 

and Gaunt t  [1]). 

It is known that C, is considerably weaker than I (see L6vy [4], the diagram on 

p. 224). In [3] L6vy shows that C, ~ -P3 is not provable for any n. Here we 

strengthen this result by proving P 3 - *  I .  Thus for n > 3, the equivalence 

P,  ~ I is provable in set theory without ACI 
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Many other equivalents of  I are known; see [3] and [8] where other references 

are given. It should also be mentioned that I is implied by and properly weaker 

than AC (see Halpern [2]). 

The proof  of P3 ~ I is given in two parts: In part 1 we prove an elementary 

combinatorial lemma which asserts the existence of certain finite graphs. In 

part 2 we show how each Boolean algebra B is associated with a graph G(B) 

in such a way that the 3-colorings of G(B) yield prime ideals of B, and the 3-col- 

orings of the finite subgraphs of G(B) are yielded by the prime ideals of the 

finite subalgebras of B. 

Part 1 

NOTATION. A graph is an ordered pair G = (A, R ) ,  where R is a 

symmetric, irreflexive binary relation on A. A is the set of vertices of 

G, denoted by [ G [ .  R,  the set of  edges of  G, is denoted by G °. G' is a 

subgraph of G, G' < G, if I G'I I GI and G 'o G ° (Notice that two 

vertices of G' which are connected by an edge of G are not necessarily con- 

nected by an edge of G'). If N is a set of graphs then the sum of N ,  ]~ N ,  

is the graph ( A , R )  withA = U { [ G I : G ~ N } ,  n = [ ,_J{G°:G~N}. We write 

G + G' for ~ {G, G'}. G denotes the cardinality o f [ G  I . G is a complete n-graph, 

if G = n and each pair of distinct vertices is joined by an edge. An n-coloring 

of a graph (A, R)  is a function a from A into n (n = {0, 1,..., n -  1}) such that 

xRy ~ ax ~ ay ,  all x, y ~ A .  C,(G) denotes the set of all n-colorings of G. If r 

is an equivalence relation on a set E ,  [r]  denotes the corresponding partition 

of  E. eq,(E) denotes the set of all equivalence relations r on E with [r]  =< n. 

Thus eq,(E) ~_ eq,+a(E ). We use .. r'E ambiguously to denote the functional 

restriction a ~" E of a function tr to a subset E of  dora(a), or to denote the re- 

lational restriction r ~ E of a relation r to E.  a [I E denotes the equivalence re- 

lation on E induced by a, i.e. a l I E  - -  x E :  = If E _~ IGi, 

let R,(G,E) = {a ]l E : a  E C,(G)}. Thus R,(G,E) is the set of equivalence rela- 

tions on E which can be extended to an n-coloring of G. 

COLORING EXTENSION LEMMA. Given n > 3, a finite set E and any subset 

K ofeq,(E).  Then there exists afinite graph G, E c_ I G I, such that R,(G, E) = K. 

COROLLARY. Given a finite set E and K ~_ eq2(E), there is a finite G, E ~_ I G [ , 

such that R3(G,E ) ~- K .  

The Corollary is all we need in proving Pa ~ I .  We shall prove the general 

lemma since it might be of interest in its own. 
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PRo ,osmoN Zf E = I l' lG  I, then 

R,(G1 + G2, E) = R,(GI, E) ~ Rn(G2, E). 

The proof  is immediate. (Note that if z !l E e Rn(G, E) then there is a ~ C~(G) 

with t r ~ E = z ~ E ) .  

In virtue of  Proposition 1 it is sufficient to prove the Coloring Extension Lemma 

for each of the sets K,  = eqn(E ) - {r}, r G eqn(E). For, let G r be graphs appropriate 

for Kr and such that I G r l n l G ,  l = E for r ~ s. Then the graph 

{G,: reeq~(E) - K} is appropriate for K if K ~ eq~(E). If K = eq,(E) we 

take the graph over E without any edges.* 

PROPOSITION 2. Let n > 3. Then there are arbitrarily large finite graphs 

G such that 

i) G is not (n-1)-colorable,  

ii) given any non-constant function f f rom [G{ into n,  there is an n-coloring 

tr of G such that trx ~ f x , all x G I G I; indeed for  each h >= n with h - n (rood 2) 

there is a graph G, G = h,  satisfying (i) and (ii). 

P roof  by induction on n. I f n  = 3, h_>_ 3, h odd, let G be a cycle with h 

vertices; say G = ( h , R ) ,  where 0R1, 1 R 2 , . . . ( h - 1 ) R O .  G is not 2-colorable 

since h is odd and _>_ 3. Given a non-constant function f from h into 3, there 

are adjacent vertices x ,y  with f x  ~ f y ,  say fO ~ f ( h -  1). Let o0 = f ( h -  1) 

and o-(i + 1) < 3 such that tr(i+ 1) ¢ tri and a(i + 1) ~ f ( i  + 1), i=0 ,  1, . . . , h - 2 .  

Then tr0 t f 0  since f ( h - 1 ) t  f 0 ,  and t r ( h - 1 ) ¢  tr0 since t r 0 - - f ( h - 1 ) .  

Therefore tr is a 3-coloring of  G with the required property. 

Induction step. Let h_>_ n + l ,  h - n + l  (rood2).  Let G be a graph, 

= h - 1, satisfying (i) and (ii) with respect to n. We introduce one new vertex 

Q and join it with each vertex of  G be an edge. The resulting graph G' has h 

vertices and satisfies (i) and (ii) with respect to n + 1. (i) is trivial. 

PROOF OF (ii). Let f be a non-constant function from I G'I into n + 1. There 

is a permutation rc on n + 1 such that the function f l  = rc o f  satisfies (a)f:(Q) ¢ n 

and (b) f l ( x )  = n for some x e [ G [. Since h - 1 > 1 and n > 1, (b) implies the 

existence of  a non-constant function f2 from I G I into n such that f2Y = f l y  

whenever f l y  < n. By induction hypothesis there is an n-coloring z of G with 

* Victor Hamik found a proof of the Coloring Extension Lemma which is dual to the proof 
given here: He starts with the trivial cases K={r} and gives for n >_ 3 a non-trivial construc- 
tion of a "graph multiplication" Mn such that 

R,( M~( G1, G2), E) = R~( G1, E) k.) R~( G2, E). 
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zy ~f2Y, all y ~ ] G [. Since the range of • is included in n, we have zy ~ flY, all 

Y e ! G I, and z can be extended to an (n + 1)-coloring of G' by setting zQ = n. 

By (a), zy ~ f lY for all y e [ G' I" Thus cr = n -  1 o z is an (n + 1)-coloring of G' 

such that ay ~ fy ,  all y e [ G ' [ .  

Note that Proposition 2 fails for n = 2. Except in reference to this proposition, 

the hypothesis n > 2 will not be used any more in the first part. 

For the following graph constructions we fix n > 3 and consider triples 

(G,E,r)  where G is a finite graph, E ~ ]G] and reeq,(E).  Let " ex t "  be the 

relation defined by (G, E, r ) e x t  ( G ' , E ' ,  r ' )  iff G < G' and for all a: 

(a) if o'eC.(G') and alIE r then al]E' ' ~ r 

(b) if aee . (G)  and a If E # r then there is z e C . ( G ' )  such that a _c z and 

zl[E' # r ' .  
The relation " e x t "  is transitive and reflexive. We consider the following con- 

ditions on a triple (G,E,r):  

(Co) no condition 

(C1) [r]  = n 

(Cz) I t ]  = 1 (r is trivial) 

(Ca) [r--~]= 1 and ~ : >  n and ~ : - n  (mod2)  

(C.) r q~ R.(G, E) 

PROPOSITION 3.1. (i = 0,1,2,3,) :  If (G,E,r)  satifies (Ci) then there is 

(G', E'. r') satisfying (Ci+ 1) such that (G, E, r) ext (G', E', r ' ) .  

PROOF OF 3.0. Given (G,E ,r ) .  Let [r]  = {Fx,..-,Fk}. If  k = n we set 

(G' ,E ' , r ' )  = (G,E , r ) .  If k < n,  we pick one element czeF, for each i _-< k.  

Let A be a complete (n -k ) -g raph  disjoint to G. Let G' be the sum G + A to- 

gether with the edges {el, a}, i <_ k, a lA I. Let E ' =   uIA I and r ' =  rk3 

(identity on [A 1)" Then [ r ' ]  = n.  

PROOF OF (a). Let a e C,(G') such that a If E = r .  Then r '  ~ a 11 E ' .  To 

verify the converse inclusion assume x(a II E')y and consider the three cases 

x,y E, x,y lAl, and y lA[. The last case is impossible since xrc,, 

some i, and the edge {ci, y} belongs to G ' .  The first two cases clearly imply 

xr'y.  Thus r '  = a I[ E ' .  

PROOF OF (b). Let aeC,(G) and a l I E ~  r .  Since . ~ =  n - k ,  there is 

'c: n such that tr ~ z  and z r IAI is one-one and "ca # zc,, all a e l A  I 

and i < k. Then z e C,(G') and z I[ E'  # r ' ,  since r '  ~ E = r. 
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PROOF OF 3.1. Given (G,E,r> satisfying (C~). Let Jr] = {F1, '" ,Fn}.  For 

each (Xl, X2," ' ,Xn-1)~F1 x F 2 ×  "'" ×Fn-~ we introduce a new vertex 

P(xl,  " ' ,  x , -1)  and the edges {xi, P(x~, . . . , x ,_ l )} ,  i =  1 , 2 , . . . , n - 1 .  G' is 

the resulting extension of G. Let E ' =  F,U{P(t ) :  t~F1 × ... x Fn_I} and 

r '  = E' x E ' .  Thus [ r ' ]  = 1. The proof  of (a) is immediate. 

PROOF OF (b). Let tr~ C,(G) and tr [[ E y~ r .  Then a It E $ r since [ ~  = n.  

Therefore there are i,j, i < j  < n, and a e F  i, b EF i such that aa = ab. 

Case 1. j = n. Since every new vertex is joined to only n - 1 old vertices, 

tr can be extended to an n-coloring z of G' .  a is ith component of some 

t e F j  × ... x F ~ _ l .  Thus zb = za y~zP(t).  Hence z l l E ' ~  r '  since b e E '  

and P(t) e E ' .  

Case 2. j < n .  Let t e F  1 × . - . × F , _ I  with ith component a a n d j t h  com- 

ponent b. Since tra -- ab there are at least two choices for zP(t). Therefore z 

can be chosen such that z r" E '  is non-constant. 

PROOF OF 3.2. Given (E, G, r )  satisfying (C2). Choose k such that E + k is 

__> n and - n  (rnod2). We introduce k new vertices P1, "",Pk and k disjoint 

complete (n-1)-graphs  A 1, "",Ak and pick one element Po ~ E.  Each vertex of 

A i is joined to the two vertices Pi and Pi-~, i = 1 ,2 , . . . , k .  G' is the resulting 

extension of G, E' = EL){P1 ," . ,Pk} ,  r '  = E' × E ' .  Clearly ( G ' , E ' , r ' )  is an 

"ext"-extension satisfying (C3). 

PROOF OF 3.3. Given ( G , E , r )  satisfying (Ca). Let A be a graph, i T =  

and I AIt'3IGJ = 0, satisfying (i) and (ii) of Proposition 2. Let g be a one-to-one 

function from ]A] onto E .  Let G' be the sum G + A together with the edges 

{a, ga}, a ~ [A[.  Let E '  = E ,  r '  = r .  Since A is not (n-1)-colorable,  we have 

r (s R,(G', E), hence (C4): r '~ R,(G', E') .  Condition (a) holds for the same rea- 

son: If ~ e Cn(G') then a II E ~ r .  

PROOF OF (b). Given aeC,(G)  with a l [ E # r .  Let fa = a ( g a ) ,  a e l A I .  

Then f is non-constant. By Proposition 2(ii) there is a l e  C,(A) with ala ~ a(ga) ,  

all a e I A I" Then z = a ~ al  is the required extension of a .  

PROPOSITION 4. Coloring Extension Lemma for K,  = eq,(E) - {r} 

PROOF. Given E, r .  Let Go be the graph on E without any edges. By Propo- 

sition 3 and transitivity of " ex t "  there is (G' ,E' ,  r ' )  satisfying (C4) such that 

(Go, E , r ) e x t ( G ' , E ' , r '  ) .  Since r ' (sR.(G' ,E ' ) ,  (a) implies r~R . (G ' ,E ) .  If  
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s ~ eq~(E) - {r}, let ~ E C~(Go) with tr tl E = s .  By (b), ~r can be extended to an 

n-coloring of  G'.  Therefore s~ Rn(G',E). Hence R,(G',E) = K, .  

As noted above, the Coloring Extension Lemma follows from Propositions 

1 and 4. 

Part 2 

In order to avoid the axoim of choice we need a uniform way of forming dis- 

joint unions of arbitrary sets of graphs. 

The pair ( G , E )  satisfies condition (*) if G is a graph, E ~  IGI, and 

E ~ V x {0} (Vis the universe, 0 the empty set). 

Given (G, E>, let 

= ! (x,<G,E>>, if x E I G I - E  

t x,  if x ~ E .  

f is one-to-one on [ G[ since (x, (G, E)> ~ E.  

Let [G,E] denote the f-isomorphic image of G. 

PROPOSITION 5. 

1> E leG, Ell and Rn([G,E],E ) = Rn(G,E); 
2) I f  ( G , E ) ,  ( G ' , E ' )  both satisfy (*) and ( G , E )  ~ ( G ' , E ' ) ,  then 

lEG, Ell n I EG',E'J I -- E r E '  

PROOF OF (2). Let y ~ I [G, E] [ n l G', E']  I" If y $ E then y = (x, (G, E ) )  and 

therefore yq~E' since ( G , E )  ~ 0 and E' _~ V x {0}. Hence y = ( x ' , ( G ' , E ' ) )  

which contradicts (G',E'> ~ (G,E>. Therefore y ~ E C~E'. The converse in- 

clusion follows from (1). 

Let M be a set of  pairs (G, E> satisfying (*). We define 

~ M  = E{[G,E]:  ( G , E )  eM} ,  

U g  = U {E: ~ G ( ( G , E ) ~ M ) } .  

PROPOSITION 6. For M as above 
A 

l) R , ( ~ M ,  Um) c {r~eq,(UM) : V ( G , E ) ~ M  (r ) EeR, (G,E))}  

2) I f  M is finite, then the converse inclusion holds too. 

Note. The condition of finiteness is only required to avoid the axiom of choice. 

Proof. (1) is immediate from Proposition 5(0. Assume then M finite and 

r ~ eqn(Um) such that r [" E ~ R,(G, E), all (G, E)  ~ M.  By 5(0,  r ~" E ~ R,([G, El, E). 
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Let a o : U u ~ n  such that % I I U M =  r. For each (G ,E>~M we choose an 

n-coloring cr(G, E) of [G, El which extends a o r" E. Let o- = [_J {a(G, E); <G, E> e M}. 

Then a is single-valued (Proposition 5(2)). Therefore a ~ C,(EM) and tr II uu--  r 

Hence r ~ Rn(Y~M , UM). 

TI-mOREM (of set theory without AC). There is a function G which assigns 

to each Boolean algebra B a graph G(B) such that 

1) if G(B) is 3-colorable then there is a prime ideal in B, 

2) every finite subgraph of G(B) is 3-colorable. 

COROLLARY. P3 --~ I .  

PROOF OF THE THEOREM. It suffices to define~G(B)for the case I BI _ v x {0}. 

Let fin(B) denote the set of finite subalgebras of B. If I _~ [ B * ] _  ]B], let 

r(B*,I) denote the equivalence relation on [B*[ corresponding to the partition 

{I,[B* I - I } .  Let K(B*)= {r(B*,I): I prime ideal in B*}. Then K(B*)~_ 

eq2(IB*[).  Let M = {(G, IB*I>: B*efin(B) and [G[  _~ [B*[ t . )@ and 

Ra(G, [B* [) = K(B*)}. 

The graph G(B) = ~,M then satisfies (1) and (2). 

For the proof we recall the following: 

a) Every finitely generated Boolean algebra is finite. 

b) Every finite Boolean algebra has prime ideals. 

c) The restriction of a prime ideal to a subalgebra is a prime ideal of the 

subalgebra. 

d) If I _~ [B I and I ~ [ B * [  is a prime ideal of B* for all B* ~fin(B), then I 

is a prime ideal of B. 

PROOF OF (1). From the (Corollary to the) Coloring Extension Lemma we 

get: 

(+ )  For each B*~fin(B) there is G such that (G , [B*[ )~M.  In particular, 

IBI = I  (B)t 
Given a 3-coloring a of G(B), let I = {x~[B[:  trx = a0}, where 0 denotes 

the zero-element of B. We show that I is a prime ideal of B. Let r = a I[ Uu. 

Then r [" I all B* ~fin(B) (Proposition 6(1) and (+)) .  Therefore, 

since I ¢3 ]B*{ is the equivalence class of r [" ]B* [ containing 0, I t~ ]B* ] is~a 

prime ideal of B* for all B* ~ fin(B). By (d), I is a prime ideal of B. 

PROOF OF (2). Let G* be a finite subgraph of G(B). Let N be a finite subset 

of M with G* < ~ N. By (a) there is Bo ~ fin (B) such that ]B* [ _ [Bo ] for all 
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B* occurr ing in N .  Let I o be a prime ideal o f  B o ((b)). Let r o = r(Bo, Io) ~ U~¢. 

Then r o ~ eq3(UN), and for all (G,  [B* I) e N we have r o r" I B*[ = r ( B * , I  o n lB* I) 

K(B*) =  3(a, I B*I) by (c). Proposi t ion 6(2) yields r o ~ R 3 ( ~ N ,  UN). In 

particular, Y,N is 3-colorable. Thus G* is 3-colorabte. 

PROBLEM. Give a " d i r e c t "  p r o o f  o f  P3 ~ P4.  
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